Course Outline
Machine Learning Introduction
- Types of machine learning – supervised vs unsupervised
- From statistical learning to machine learning
- The data mining workflow: business understanding, data preparation, modeling, deployment
- Choosing the right algorithm for the task
- Overfitting and the bias-variance tradeoff
Python and ML Libraries Overview
- Why use programming languages for ML
- Choosing between R and Python
- Python crash course and Jupyter Notebooks
- Python libraries: pandas, NumPy, scikit-learn, matplotlib, seaborn
Testing and Evaluating ML Algorithms
- Generalization, overfitting, and model validation
- Evaluation strategies: holdout, cross-validation, bootstrapping
- Metrics for regression: ME, MSE, RMSE, MAPE
- Metrics for classification: accuracy, confusion matrix, unbalanced classes
- Model performance visualization: profit curve, ROC curve, lift curve
- Model selection and grid search for tuning
Data Preparation
- Data import and storage in Python
- Exploratory analysis and summary statistics
- Handling missing values and outliers
- Standardization, normalization, and transformation
- Qualitative data recoding and data wrangling with pandas
Classification Algorithms
- Binary vs multiclass classification
- Logistic regression and discriminant functions
- Naïve Bayes, k-nearest neighbors
- Decision trees: CART, Random Forests, Bagging, Boosting, XGBoost
- Support Vector Machines and kernels
- Ensemble learning techniques
Regression and Numerical Prediction
- Least squares and variable selection
- Regularization methods: L1, L2
- Polynomial regression and nonlinear models
- Regression trees and splines
Unsupervised Learning
- Clustering techniques: k-means, k-medoids, hierarchical clustering, SOMs
- Dimensionality reduction: PCA, factor analysis, SVD
- Multidimensional scaling
Text Mining
- Text preprocessing and tokenization
- Bag-of-words, stemming, and lemmatization
- Sentiment analysis and word frequency
- Visualizing text data with word clouds
Recommendation Systems
- User-based and item-based collaborative filtering
- Designing and evaluating recommendation engines
Association Pattern Mining
- Frequent itemsets and Apriori algorithm
- Market basket analysis and lift ratio
Outlier Detection
- Extreme value analysis
- Distance-based and density-based methods
- Outlier detection in high-dimensional data
Machine Learning Case Study
- Understanding the business problem
- Data preprocessing and feature engineering
- Model selection and parameter tuning
- Evaluation and presentation of findings
- Deployment
Summary and Next Steps
Requirements
- Basic understanding of statistics and linear algebra
- Familiarity with data analysis or business intelligence concepts
- Some exposure to programming (preferably Python or R) is recommended
- Interest in learning applied machine learning for data-driven projects
Audience
- Data analysts and scientists
- Statisticians and research professionals
- Developers and IT professionals exploring machine learning tools
- Anyone involved in data science or predictive analytics projects
Delivery Options
Private Group Training
Our identity is rooted in delivering exactly what our clients need.
- Pre-course call with your trainer
- Customisation of the learning experience to achieve your goals -
- Bespoke outlines
- Practical hands-on exercises containing data / scenarios recognisable to the learners
- Training scheduled on a date of your choice
- Delivered online, onsite/classroom or hybrid by experts sharing real world experience
Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Contact us for an exact quote and to hear our latest promotions
Public Training
Please see our public courses
Testimonials (3)
Even with having to miss a day due to customer meetings, I feel I have a much clearer understanding of the processes and techniques used in Machine Learning and when I would use one approach over another. Our challenge now is to practice what we have learned and start to apply it to our problem domain
Richard Blewett - Rock Solid Knowledge Ltd
Course - Machine Learning – Data science
I like that training was focused on examples and coding. I thought that it is impossible to pack so much content into three days of training, but I was wrong. Training covered many topics and everything was done in a very detailed manner (especially tuning of model's parameters - I didn't expected that there will be a time for this and I was gratly surprised).
Bartosz Rosiek - GE Medical Systems Polska Sp. Zoo
Course - Machine Learning – Data science
It is showing many methods with pre prepared scripts- very nicely prepared materials & easy to traceback