Course Outline

DAY 1 - ARTIFICIAL NEURAL NETWORKS

Introduction and ANN Structure.

  • Biological neurons and artificial neurons.
  • Model of an ANN.
  • Activation functions used in ANNs.
  • Typical classes of network architectures .

Mathematical Foundations and Learning mechanisms.

  • Re-visiting vector and matrix algebra.
  • State-space concepts.
  • Concepts of optimization.
  • Error-correction learning.
  • Memory-based learning.
  • Hebbian learning.
  • Competitive learning.

Single layer perceptrons.

  • Structure and learning of perceptrons.
  • Pattern classifier - introduction and Bayes' classifiers.
  • Perceptron as a pattern classifier.
  • Perceptron convergence.
  • Limitations of a perceptrons.

Feedforward ANN.

  • Structures of Multi-layer feedforward networks.
  • Back propagation algorithm.
  • Back propagation - training and convergence.
  • Functional approximation with back propagation.
  • Practical and design issues of back propagation learning.

Radial Basis Function Networks.

  • Pattern separability and interpolation.
  • Regularization Theory.
  • Regularization and RBF networks.
  • RBF network design and training.
  • Approximation properties of RBF.

Competitive Learning and Self organizing ANN.

  • General clustering procedures.
  • Learning Vector Quantization (LVQ).
  • Competitive learning algorithms and architectures.
  • Self organizing feature maps.
  • Properties of feature maps.

Fuzzy Neural Networks.

  • Neuro-fuzzy systems.
  • Background of fuzzy sets and logic.
  • Design of fuzzy stems.
  • Design of fuzzy ANNs.

Applications

  • A few examples of Neural Network applications, their advantages and problems will be discussed.

DAY -2 MACHINE LEARNING

  • The PAC Learning Framework
    • Guarantees for finite hypothesis set – consistent case
    • Guarantees for finite hypothesis set – inconsistent case
    • Generalities
      • Deterministic cv. Stochastic scenarios
      • Bayes error noise
      • Estimation and approximation errors
      • Model selection
  • Radmeacher Complexity and VC – Dimension
  • Bias - Variance tradeoff
  • Regularisation
  • Over-fitting
  • Validation
  • Support Vector Machines
  • Kriging (Gaussian Process regression)
  • PCA and Kernel PCA
  • Self Organisation Maps (SOM)
  • Kernel induced vector space
    • Mercer Kernels and Kernel - induced similarity metrics
  • Reinforcement Learning

DAY 3 - DEEP LEARNING

This will be taught in relation to the topics covered on Day 1 and Day 2

  • Logistic and Softmax Regression
  • Sparse Autoencoders
  • Vectorization, PCA and Whitening
  • Self-Taught Learning
  • Deep Networks
  • Linear Decoders
  • Convolution and Pooling
  • Sparse Coding
  • Independent Component Analysis
  • Canonical Correlation Analysis
  • Demos and Applications

Requirements

Good understanding of mathematics.

Good understanding of basic statistics.

Basic programming skills are not required but recommended.

  21 Hours
 

Testimonials (2)

Related Courses

Related Categories